Investigating Solutions to Voltage Increase on Distributed Generation Power Systems

Dec1613

Adam Beck - Team Leader Matthew Ladd - Webmaster/Key Concept Holder Trevor Andersen - Communications Leader

Advisor - Anne Kimber, Zhaoyu Wang Client - Maquoketa Valley Rural Electric Cooperative

> Email - <u>dec1613@iastate.edu</u> Website - <u>http://dec1613.sd.ece.iastate.edu</u>

The Problem

• Lightly loaded rural system are seeing an increase in Distributed Generation

• Low load times correspond to high solar production (Mid-day on sunny days)

• ANSI Voltage Regulation Standards are 114V to 126V

• High solar production and low loads can cause voltages above 126V on the system

Requirements

Functional

Non-Functional

- Keep all elements with voltage limits under all conditions.
- Accurately model system under differing load/DG conditions
- Solving all instances where model departs from ANSI limits

- Learning to use modeling software
- Research into possible solutions to select the most universally applicable
- Compiling our data and research to present to our client: MVEC

Our Plan

- Investigate/Research 5 solutions to stop voltage rise
 - Solar inverters
 - Storage
 - Capacitor bank
 - Customer side voltage regulation
 - Load Tap Changing Transformers
- Test out solutions on various cases to find the best options

Schedule

		Week Of												Week Of																			
	Jan	Feb	Feb	Feb	Feb	Feb	Mar	Mar	Mar	Mar	Apr	Apr	Apr	Apr	May		Aug	Aug	Sep	Sep	Sep	Sep	Oct	Oct	Oct	Oct	Oct	Nov	Nov	Nov	Nov	Dec	Dec
	25th	1st	8th	15th	22nd	29th	7th	14th	21st	28th	4th	11th	18th	25th	2nd		22nd	29th	5th	12th	19th	26th	3rd	10th	17th	24th	31st	7th	14th	21st	28th	5th	12th
Create Draiget	25111	150	our	1500	22110	22011	7.01	1401	2150	2011	401	1101	Totti	2500	2110	Confirm research																	
create Project																and testing		- 10															
Schedule						· · · · ·		_	_				-	_		Model and Test																	
NDA Process																method 1		-															
and gather data																Model and Test																	
form MVEC																method 2																	
Obtain Windhill						<u>e – 1</u> 1				_			-			Model and Test																	
Obtain windwill																method 3																	
Software																Model and Test																	
Learning																method 4																	
WindMil and																Finalize Findings						22											
OpenDSS																Perform Cost																	
software																Analysis																	
solution				-		_								-	-	Write report																	
Model Systems										1						Give																	
Research																presentation																	

Software

• Windmil

- Creates instantaneous snapshot of our system
- Can easily add and edit components to system and see an immediate effect on the snapshot
- Graphical user interface adds ease of use when editing solution
- Exports system and model data to OpenDSS for further analysis

• OpenDSS

- Creates time lapse data for system
- Can model DG systems for a range of outputs over course of a day
- Can model load for range of values as it fluctuates over 24 hours

System Model

- Feeder for single substation
- Base system has no current DG
- Modeled on worst-case day
 - Highest difference between solar output and load
 - High solar output, low load
- Loads range between 0 and 35 kW

Basic System With Low Load

Problem Conditions

- A branch far from substation
- Initial installation of 15 kW solar generator
 - 15 KW is average installation size
 - Customers oversize solar generator for tax benefit (approx. 50% cost recouped)
- Installation of 4 additional 15 kW Generators
- Extensive voltage rise on immediate branches beyond installation site

Existing Branch with No DG

1 - 15 kw DG

5 - 15 kw DG

Where Are We Now

- Analyzing data
 - Over 100000 individual data points on three systems
 - Distilling data down to a few point indicative of broader system statuses
- Understanding software
 - Two completely new softwares to our team
 - Relatively little documentation / tutorials
 - Very complex and intricate systems to accurately model

Questions?

Email - <u>dec1613@iastate.edu</u> Website - <u>http://dec1613.sd.ece.iastate.edu</u>